Mark scheme – Predicting Chemical Reactions (F)

Formulae √ (AO2.1) formulae but Balancing √ ALLOW 1 mark for a balanced equation	Question			Answer/Indicative content			Marks	Guidance
2 a 2Na + 2H ₂ O → 2NaOH + H ₂ 2 (AO1.1) Balancing √ ALLOW any correct multiple, including fractions DO NOT ALLOW and / & instead of '+' 2 a Formulae √ Balancing √ 2 (AO1.1) (AO2.1) b ALLOW any correct multiple, including fractions DO NOT ALLOW and / & instead of '+' b (Sodium atom) loses an electron / D xidation is loss of electrons √ 1 (AO1.1) Assume unqualified answer refers to rubidium c (Sodium atom) loses an electron / D xidation is loss of electrons √ 1 (AO1.1) Assume unqualified answer refers to rubidium c Idea that attraction of rubidium is further from the nucleus / ORA √ Assume unqualified answer refers to rubidium c Idea that attraction of rubidium's nucleus for outer electron is less / ORA √ 2 (AO1.1) Outer electron in rubidium is lost more easily / ORA √ IGNORE idea that outer electron is lost more quickly a Element Formula Fluorine F ₂ pale yellow Cas 5 3 a Element Formula Fluorine C ₀ green √ gas √ 3(AO 1.1)	1			A D B least reactive correct order – 2 marks				
2 a $2Na + 2H_2O \rightarrow 2NaOH + H_2$ 2 a <td< td=""><td></td><td></td><td></td><td>Total</td><td></td><td></td><td>2</td><td></td></td<>				Total			2	
bOxidation is loss of electrons \checkmark (AO1.1)Oxidation is loss of electrons \checkmark (AO1.1)Any two from: Outer electron in rubidium is further from the nucleus / ORA \checkmark Assume unqualified answer refers to rubidiumcIdea that attraction of rubidium's nucleus for outer electron in rubidium is lost more easily / ORA \checkmark ALLOW outer electron in higher energy level / shellduter electron in rubidium is lost more easily / ORA \checkmark Idea that outer electron is lost more quicklyALLOW more shielding in rubidium IGNORE idea that outer electron is lost more quicklyduter electron in rubidium is lost more easily / ORA \checkmark Idea that outer electron needed at least onceduter electron in rubidium is lost more easily / ORA \checkmark State at room temperatureduter electron in rubidium is lost more easily / ORA \checkmark State at room temperatureduter electron in rubidium is lost more easily / ORA \checkmark State at room temperatureduter electron in rubidium is lost more easily / ORA \checkmark State at room temperatureduter electron in rubidium is lost more easily / ORA \checkmark State at room temperatureduter electron in rubidium is lost more easily / ORA \checkmark State at room temperatureduter electron in rubidium is lost more easily / ORA \checkmark State at room temperatureduter electron in rubidium is lost more easily / ORA \checkmark State at room temperatureduter electron in rubidium is lost more easily / ORA \checkmark State at room temperatureduter electron in rubidium is lost more easily / ORA \checkmark	2	а		Formulae √			(AO1.1)	fractions DO NOT ALLOW and / & instead of '+' balancing mark is dependent on the correct formulae but ALLOW 1 mark for a balanced equation with a minor error in subscripts / formulae
3 a Image: Figure 1 and the formula form: Colour from the formula for colour from temperature from the formula for colour from temperature from the formula for colour from temperature for colour for colour from temperature from the formula for colour from temperature from temperature from temperature from temperature from temperature from temperature from formula for colour from from temperature from formula for colour from from temperature from formula for colour for col		b						
Big State State at room temperature State at room temperature 3 a Fluorine F2 pale yellow Gas Chlorine Cl2 green gas 3(AO 1.1)		С		<u>Outer electron</u> in ru nucleus / ORA ✓ Idea that attraction <u>outer electron</u> is les <u>Outer electron</u> in ru	of rubidium ss / ORA √	's nucleus for		rubidium ALLOW outer electron in higher energy level / shell ALLOW more shielding in rubidium IGNORE idea that outer electron is lost more quickly Reference to outer electron needed at
3 a Element Formula Colour room temperature Fluorine F2 pale yellow Gas Chlorine C/2 green √ gas √				Total			5	
lodine l₂ grey solid √	3	а		Fluorine F2 Chlorine Cl2 Bromine Br2	pale yellow green√ brown	room temperature Gas gas √ liquid	3(AO 1.1)	(2)

					being a liquid at room temperature were common misconceptions.
				ALLOW weak intermolecular bonds	
				2(AO 1.1)	DO NOT ALLOW references to covalent bonds between <u>molecules</u> OR weak forces between <u>atoms</u> – scores 0 <u>Examiner's Comments</u>
	b		(Fluorine has) weak intermolecular forces / weak forces between molecules √ which only require a small amount of		Higher ability candidates described that fluorine has weak intermolecular forces, which are easily broken.
			energy to break / which are easy to break √		? Misconception
					A common misconception is still that simple covalent molecules have low melting & boiling points due to weak covalent bonds between molecules or weak forces between atoms.
					ALLOW 8 electrons in outer shell
	с		(Group 0 elements) have a full / complete outer shell ✓ Idea that they have no tendency to lose or gain electrons ✓	2(AO 1.1)	IGNORE idea that they have no tendency to react unless linked to gaining a full outer shell (of electrons)
					Examiner's Comments
					Good responses to this question described that the elements in Group 0 have a full outer shell, so have no tendency to lose or gain electrons.
	d		Any two from: (Potassium) reacts violently / sparks / ignites / explodes ✓ floats / moves around on surface of water ✓ moves quickly (on water) ✓ lilac flame ✓ melts (into a ball) ✓ dissolves ✓ (hydrogen gas ignites with) a squeaky pop ✓	2(AO 2.2)	
					ALLOW (potassium) disappears / gets smaller <u>Examiner's Comments</u>
					Most candidates were able to give two correct observations.

					When candidates did not gain credit, it was usually because they stated the type of observations you would make (eg if the potassium caught fire, if the potassium floated etc) rather than the actual observations made.
	e		Any two from: (Down Group 1) <u>outer</u> electron or <u>outer</u> shell gets further from the nucleus / more shielding / atomic radius increases / more electron shells / ORA √	2(AO 1.1)	ALLOW <u>outer</u> electron in potassium is further from the nucleus than in lithium / ORA IGNORE potassium has more electrons (than lithium) DO NOT allow idea that outer electron is lost more quickly / AW
			Idea of less attraction between nucleus and outer shell electron √ <u>Outer</u> shell electron is lost more easily √		Examiner's Comments Good responses to this question described the idea that down Group 1 there are more electron shells, so there is less attraction between the nucleus and the outer shell electron, which is lost more easily. When candidates did not gain both marks it was usually because they did not state that it was the outermost or outer shell electron that is lost.
			Total	11	
4			D	1	
			Total	1	
5			Enter text here.		
			D	1	
			Total	1	
6	а	i	Molecular formula: At ₂ (1) Atomic radius: 148 – 168 (1)	2	DO NOT ALLOW AT ₂ / At2 ALLOW any range of numbers provided it is completely within the range given for the answer
		ii	Makes iodine and sodium bromide (1)	1	
		iii	Bromine is more reactive than iodine (1)	1	ALLOW ORA
	b	i	Same number of electrons in outer shell / all have 7 electrons in outer shell (1)	1	ALLOW outer electrons or valence electrons rather than electrons in the outer shell ALLOW valence shell rather than outer shell

				DO NOT ALLOW the wrong number of electrons in the outer shell
				ALLOW any correct multiple of the equation including fractions
	ii	2Na + $Br_2 \rightarrow 2NaBr$ Correct formulae of reactants and products (1) Balancing – depend on correct formulae (1)	2	ALLOW = or ⇒ instead of → DO NOT ALLOW and or & instead of + ALLOW one mark for correct balanced equation with minor errors of case and
				subscript, e.g. 2NA + Br2 → 2NaBr
	iii	KAt (1)	1	
		Total	8	